

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 500-509 Chen Xiaoming, Liu Yan, Li Renfa

500

Power constraint communication-aware task scheduling in
reconfigurable multiprocessors

Xiaoming Chen, Yan Liu*, Renfa Li

College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, Hunan, China

Received 1 June 2014, www.cmnt.lv

Abstract

Heterogeneous multiprocessors with FPGA component have recently received a lot of attention due to its low cost and power

consumption. However, most of existing works about task scheduling algorithm focus on minimization of system cost or power

consumption. Actually, optimizing multiprocessor performance within a given power budget has recently received a lot of attention.

Peak power consumption should be carefully controlled than directly improve computing performance. Furthermore, FPGA component

in multiprocessors has essential parallelism ability to execute multiple tasks at same time using dynamic reconfigurable features. In

this environment, tasks and communications should be carefully scheduled because their execution orders affect the performance of

the whole chip. This paper presents an Integer Linear Programming (ILP) formulation that integrates the resource delay model and

FPGA-component with pipelined scheduling and global power control. Moreover, to enhance the computation efficiency, a heuristic

algorithm namely PCLS that integrates pipelined scheduling and global power control for heterogeneous multiprocessor architecture

is proposed. Experiments show that our ILP method obtains the optimal results when task nodes are less than 35. Proposed PCLS

heuristic algorithm achieves on average 10% higher makespan compare with DLS. For heavier synthetic task application, PCLS can

provide only about 12% performance degradation under 70% power budgets based on different heterogeneous multiprocessor

architectures.

Keywords: multiprocessors, task scheduling, system-on-chip, power control

1 Introduction

Technology scaling continues to support more transistors
be integrated into a chip and a typical multiprocessor chip
consist of many type of components such as general-
purpose CPU, DSP, FPGA and communication bus. An
important trend in embedded system is the use of
multiprocessor architectures to meet requirements of
applications, such as multiprocessor system-on-chip has
the potential ability to provide some advantages related to
system cost and power. Obtain these improvement
depends on designer make applications match with the
flexible components and configurability features provided
by the multiprocessor platform such as FPGA module.
Generally, as the system becomes larger and complicated,
the performance of the entire system is affected by the
execution order of tasks and communications known as
task mapping and scheduling problem.

Heterogeneous multiprocessor chips have potential to
obtain better area to performance ratio, high throughput
and high speed up. Exploiting inter-core heterogeneity is
challenging as it boils down to mapping tasks to most
appropriate cores and scheduling well suite task start time.
There are some challenges must be faced when solving
task scheduling problem on multiprocessor chips. Firstly,
only a subset of the total available cores used to execute
specific applications and the total number of cores maybe
large and heterogeneity including many kinds of
computing components and resources. Furthermore,

* Corresponding author’s-e-mail: liuyan@hnu.edu.cn

hardware-related component such as FPGA can provide
essential ability to execute application parallel. Secondly,
designer needs to solve the task scheduling problem by
determining the execution order of tasks and
communications co-ordinately to run application tasks in a
multiprocessor system efficiently. Thirdly, power
dissipation has become a first-class constraint in current
microprocessor design. Power dissipation increasingly
constrains the design and application of multiprocessors. It
is important to control the peak power of a multiprocessor
chip to allow improved reliability and saved chip cooling
and package cost [1]. As the number of cores integrated in
multi-core processor chip increased, the power budget of
whole chip must be controlled. In other word, compared
with the previously studied power minimization problem,
now important problem is efficiently control the peak
power consumption of a multiprocessor chip to stay below
a desired budget at the same time providing ideal
performance. This paper addresses the problem of task
mapping and scheduling on multiprocessors considers
global power control. A linear program based approach
considering communication cost is proposed to formulate
the pipeline scheduling problem. Further, an efficient
heuristic algorithm named PCLS (Power constrain
Communication aware List Scheduling) is proposed and
validated for task scheduling on power constraint
multiprocessor system.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 500-509 Chen Xiaoming, Liu Yan, Li Renfa

501

1.1 COMMUNICATION-AWARE TASK PIPELINE

SCHEDULING

Multiprocessor architectures considered in this paper
consist of multiple-ISA processors, reconfigurable
processors, memory component, and communication
infrastructure. The communication infrastructure can be
established by Network-on-Chip or shared bus, etc. The
processing elements such as general-purpose CPU,
reconfigurable processors, and digital signal processors
connected using communication infrastructure. In a typical
embedded multiprocessor architecture each processing
element has its local memory. Embedded system
application domains such as multimedia and network
processing demonstrate clear demarcation of producer and
consumer tasks with well-defined inter-task
communication behaviours [2, 3]. Due to these
characteristics and the application specific nature of the
design, the designer can statically allocate computing
resources for each task and communication task.
Communication-aware task scheduling problem involves
partitioning and mapping the computation tasks in the
application onto the processing elements of the target chip,
ordering the execution of the tasks and data transmission
between these processors co-ordinately.

2.0GHz

Processor1

Communication Infrastructure

Comm.I/F

2.0GHz

Processor2

Comm.I/F

Processor3

3.3GHz

Comm.I/F

Processor4

3.3GHz

Comm.I/F

Share

Memory

Comm.I/F

FPGA

Comm.I/F

Processor6

1.5GHz

Comm.I/F

DSP1

Comm.I/F

DSP2

Comm.I/F

1.5GHz

Processor5

Comm.I/F

Head

C1

C2 C3

C4

Sink

Com1

Com2 Com3

Com4 Com5

Com6

P1

P2

DSP1

BUS

C1 C2

C3

C4

P1

P2

DSP1

BUS

C1 C2

C3

C4

C1 C2

C3

C4

C1 C2

C3

C4

(a)

(b)

(c)

Wh Rc1 Wc1Rc3 Wc2Rc4

Wc3Rc4

Wc4 Rs Wh Rc1 Wc1Rc3 Wc2Rc4

Wc3Rc4

Wc4 Rs

Wh Rc1 Wc1Rc3

Wh Rc1

Wc2Rc4

Wc3 Rc4

Wc1Rc3 Wc4Rs Wc2Rc4

Wc3Rc4

Wc4 Rs

FIGURE 1 A motivational example of pipeline schedule

Figure 1 shows an example of application task with
communication detail model scheduling on target
multiprocessor chip. Figure 1(a) shows a simple
application task allocation. The task graph consists of four
computing node, six communication edges and additional
empty Head/Sink node to complete the DAG. Assume that
there are only Processor1, Processor2, DSP1 in original

architecture can execute above example task graph. Then
in Figure 1(a), two tasks C1 and C2 are mapped on
Processor1, C3 is mapped on DSP1, and C4 is mapped on
Processor2. Six communication edges of tasks use shared
memory to communicate. Figure 1(b) and Figure 1(c)
show time charts for different environment of scheduling.
Note that, communication edge represented by
Comj(Cs,Cd) in which Cs and Cd are the source and
destination node respectively. More details, we model
operation of each communication edge with two additional
nodes, one is write data to buffer and the other is read data
from buffer. So that communication edge Com1 in task
graph is described by (Wh,Rc1) notation in Figure 1. A
communication-aware pipeline scheduling of an iterative
application task graph be illustrated in Figure 1(b) and
Figure 1(c). Assume that two communication channel do
not share the physic buffer of shared memory using the
same memory interface. In Figure 1(b), task C1 receive
data from Head node (empty) and executes computation
task. Then task C1 writes data to its output buffer using
write operation Wc1 after running complete. Task C3 can
reads from the buffer to obtain data from task C1, then start
execute compute procedure. Note that there was no extra
communication cost between C1 and C2 because they are
mapped on the same Processor1. After task C2 and C3
completes its computation, they write data to its output
buffer by write operation Wc2 and Wc3 in Figure 1(b).
When task C4 completes its previous computation, it read
from the two input buffer using read operation labelled Rc4
and produce final result to sink node. Considering share
memory using same physical buffer provide
communication, sequence of read/write operation must be
obeyed. Using above communication model, more
complicate structure can be described like multiple
channels or interfaces. Figure 1(c) depicts a possible
pipelined schedule compare with Figure 1(b). Processor1
can execute the next loop of task C1 after finishing task C2
and C3 currently. The whole execution time of two loop of
application task can be reduced compare with normal
status displayed in Figure 1(b).

1.2 CONTRIBUTIONS

An efficient optimizes technique for communication-
aware schedule on the multiprocessor architecture
considering global power budget control presented in this
paper. Contributions are as follows:

1) We present an improved ILP-based formulation that
integrates the communication delay model and shared
memory model with pipelined scheduling and global
power control. Proposed ILP model can describe the
multiprocessor architecture more generally as transistor of
chips grow in size. Especially, we consider hardware
parallel process ability of FPGA component in our model.

2) We present a heuristic algorithm PCLS that
integrates pipelined scheduling and global power
controlled for designing high efficient computing system
implementations. Also the ILP-based method can obtain
an optimal result, the heuristic algorithm can handle bigger

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 500-509 Chen Xiaoming, Liu Yan, Li Renfa

502

problem with result quality relatively close to optimal and
requires lower run time cost.

We also present results of extensive experimentation
with realistic multimedia applications and synthetic task
graphs to evaluate the quality and run-times of our
techniques.

The paper is organized as follows: Section II provides
the related work, Section III presents the ILP formulations,
Section IV presents the heuristic algorithm, Section V
discusses the experimental results, and finally Section VI
concludes the paper.

2 Related work

In general, application task can be scheduled either at
runtime or at design time, named dynamic or static
scheduling. In runtime environment, scheduler need
determine when processors can execution task and which
tasks can be executed frequently. Due to the scheduler
overhead and application features, static scheduling
considered only in this paper. In design time environment,
static scheduler makes decision before system put into
market. For a set of application tasks, of which behaviors
and details are already known using profile tools.

Integer linear programming (ILP) can be used to find
optimal solution for the optimization problem including
scheduling problem. In ILP model, a problem is written as
a set of linear equations involving integer variables [4].
ILP model can support modelling of different features of
heterogeneous multiprocessor architecture or
communication infrastructure. But solve ILP formula
usually need exponential time cost result in impractical in
real system application. The most studied heuristic
methods for multiprocessor scheduling problems are list
scheduling techniques [5]. In this work, we choose ILP
method to find the optimal solution for the
communication-aware task scheduling on multiprocessor
chip and propose a heuristic algorithm to accelerate
scheduling procedure. There are many previously
researches focus on design space exploration. They
introduce an approach to redesign communication
architecture for special application [6]. There are many
papers concentrate on performance analysis of
communication architecture based on simulation tools
[6, 7]. The communication architecture proposed in above
works is too complicated, simulation and realization of the
whole system is too expensive in time and cost. It is
important that more efficient method is needed for fast and
accurately communication-aware system design. In
[8, 9, 17] they propose ILP-based model for accurate
scheduling and timing analysis of task on MPSoC, and
they present an efficient scheduler implementation. In this
paper, we further consider communication-aware task
scheduling problem on multiprocessor chips and use
pipelined scheduling improve time efficient, especially
considering FPGA component based on previous works
[8, 9]. In [2], they propose techniques for system-level
power optimization of throughput constrained applications
on multiprocessor architectures. We focus on power
dissipation control of whole multiprocessor chips. In fact,

our goal is control the peak power consumption of a
multiprocessor chip to stay blew a desired budget at the
same time providing ideal performance.

There are existing global power management methods
[10, 11] attempting to maximize performance under power
constraints by selecting optimal voltage/frequency level
for each core in the context of heterogeneity from process
variation. In [11], they model the problem using linear
optimization and solve it. In [12], they treated thread
scheduling and power management as independent
problem same as in [10], and they evaluate the
effectiveness and runtime complexity of different power
management algorithms. In [13], they using a simple
prediction model to support migration of thread because
periodically migrate threads to each types of cores is not
affordable in terms of performance loss and migration cost.
Several works are considering the same problem from
other perspectives. The ‘uncore’ component of system be
taken into account for dynamic thread mapping for
heterogeneous multicore systems in [14]. In [15], they
presented a different approach by dynamically scaling core
resources to create adaptive and configurable
heterogeneity in hardware. In this paper, we used DAG
model instead of thread, and we integrate task mapping,
high performance scheduling and low power consumption
into a single ILP model. PIE [16] proposed a scheduling
framework to predict workload-core mappings. It scales to
more than two types of cores. However, it does not provide
an efficient method to find optimal mapping for
heterogeneous multiprocessor systems.

3 ILP formulation for task scheduling

3.1 SYSTEM SPECIFICATION AND TARGET

ARCHITECTURE

An extension direct acyclic graph with communication
task node is used in this paper to solver power constrain
communication-aware task scheduling on multiprocessor
problem [9]. As described in Figure 1(a), we added two
empty nodes, head and sink node, which have zero
computation and initial communication delays. The source
node hasn’t predecessor nodes and the sink node hasn’t
successor nodes. They are used for indicating beginning
and end of the task. As displayed in Figure 1(b),
communication edge in application DAG transfer to two
kinds of nodes and directed edges representing write/read
operations and data dependencies of original nodes, such
as Com1 edge label as (Wh,Rc1). The task execution times
and the communication times are annotated with task
nodes and communication nodes, respectively. More
details notation about application task will described in
next chapter.

Multiprocessor architecture usually consists of
hardware/software components and custom hardware. In
general, hardware components include general-purpose
CPU and DSP, memory components, communication
infrastructure and interface. Software components include
operating system such as device driver and interrupt
service routine, and application software. Additional,

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 500-509 Chen Xiaoming, Liu Yan, Li Renfa

503

some kinds of custom hardware also added into
multiprocessor architecture including FPGA, as described
in Figure 1(a). The communication infrastructure can be
on-chip buses or Network-on-chip, etc. Communication
interfaces are supposed to connect hardware components
such as processors, IPs, and memories to the
communication networks. Figure 1(a) is an example of
target multiprocessor chip consists of nine processors. As
simplification example in Figure 1, there are only three
components available for running tasks including
Processor1, Processor2 and DSP1. Then C1 and C2
running on Processor1, task C4 running on Processor2, the
task C3 mapped on DSP1.

3.2 PROBLEM DEFINITION

It is well known that task mapping and scheduling on
multiprocessor architecture are highly dependent. The two
problems should be solved together to obtain the efficient
result. In this paper, we keep concentrate on the
communication-aware task scheduling of reconfigurable
heterogeneous multiprocessor architecture using pipelined
method.

Problem definition: Given an application task graph, a
target multiprocessor chip with its parameters, find a
mapping and pipelined scheduling of tasks and
communications on the target architecture which yields

minimum execution time of the task graph while the whole
power dissipation below given budget. To solve the
problem, we build a flexible model to describe
heterogeneous multiprocessor architecture. Then, we use
an ILP formulation and a heuristic algorithm to schedule
tasks and communications.

3.3 ILP MODEL AND FORMULATION

3.3.1 Variables

Task graph G (V, E) presents the applications and tasks. In
G (V, E), contains |V| computation task node and |E|
communication edges. Following notations are necessary
to describe ILP model used in this paper. Each
functionality nodes is labelled as Ci and each
communication edge is labelled as Comj(Cs,Cd).
Functionality node can be executed by different type of
component such as a processor, DSP, or a custom
hardware. Table 1 presents the notations used in our ILP
model. And following section states the constraints and
objective function.

Based on these notations and decision variables
mentioned above Table 1, we can construct improved
constraints to model task scheduling problem on
multiprocessor chips using pipeline technology based
previous research [8].

TABLE 1 Nomenclature of variables

Variables Description

Overh(Comj,n) related with communication overhead such as transfer, ISR, context switch

Typej present a type of component can execute node Ci notational Ci ->Typej

PE the set of all components can be used to running task node

STypei the set of components can be used to running Ci

NTypej the number of components available for Typej

Areai,j,k the area cost of Ci running on the kth instance of FPGA component j

ExeTi,j,k execution time of node Ci running on the kth instance of component type Typej

ComTj communication time of communication edge Comj(Cs,Cd)

ThrPut the delay of a pipeline stage in the design

NStage the number of pipeline stage

UTypej an integer variable which denotes the number of component of Typej used

MaxP the maximum number of the final pipelined scheduling

MaxPower the maximum value of the whole chip power consumption

MaxArea the maximum size of the FPGA component

BufMax the maximum size of the shared buffer

Buf(t) the used buffer size at time t

s
it and e

it start time and end time of node Ci or communication edge Comj(Cs,Cd)

s
jst and e

jst start time and end time of write node in communication edge Comj(Cs,Cd)

s
jdt and e

jdt start time and end time of write node in communication edge Comj(Cs,Cd)

xi,j,k
an integer variable associated with node Ci. xi,j,k=1 when Ci running on the kth instance of component type Typej;

otherwise, zero

Poweri,j,k a pre-sampling data, represent power consumption of Ci running on the kth instance of component type Typej

yi
an integer variable associated with communication edge Comj(Cs,Cd). yi=1 when Cs and Cd nodes running on the
different process component; otherwise, zero

zi,NStage set 1 when Ci or Comj(Cs,Cd) is scheduled in pipeline stage NStage; otherwise, zero

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 500-509 Chen Xiaoming, Liu Yan, Li Renfa

504

3.3.2 Constraints

1) General constraints.

Assume that task node is running exactly on one

component instance in the target architecture, and the

component instance can execute multiple task nodes. After

few modifications, following Equation (1) can suit

multithread environment. For Ci:

, ,

1

, 1
j j j

i i j k

Type SType k NType

C x

 (1)

The decision of used component instance number

should smaller or equal to the available component number

as Equation (2):

, ,

1 j

j i j k

k NType

UType k x

 (2)

The start and finish time of task node must be satisfied

with the dependency constraint of DAG to ensure the

precedence relations. In other words, the end time of each

incoming communication edge of Ci must be large or equal

to the start time, as same as communication edge

Comj(Cs,Cd). The start time and end time of Ci or

Comj(Cs,Cd) can be calculated using following Equation

(3) and Equation (4) respectively:

, , , ,

1j j j

e s

i i i j k i j k

Type SType k NType

t t x ExeT

 , (3)

e s

i i i it t ComT y . (4)

Then, following constraints described as Equation (5)

and Equation (6) need be satisfied because of the

precedence of write and read operation of nodes and edges.

For task node Ci and its incoming communication edge

Comj(Cs,Cd), equations described as following:

s s

i j j jt t ComT y , (5)

, , , ,

1k j j

s s

j s s j k s j k

Type SType k NType

t t x ExeT

 . (6)

In above Equation (5) and (6), yi is associated with

communication edge Comj(Cs,Cd) donate whether the

source node and destination node are on the same

processor or not.

If per-thread frequency and performance growth were

forever stymied, perhaps future scaling could yield more

and more cores on a die, to get the throughput performance

going for a few generations of a core’s lifetime [10]. In

fact, power and peak temperature continues to be the key

performance limiters compare with other constraints

Equation (7).

, , , ,

1j j j

i j k i j k

Type SType k NType

x Power MaxPower

 . (7)

2) Pipeline scheduling constraints.

Each task node or communication edge must be

scheduled to only one pipeline stage and set to number

NStage. For each node Ci or edge Comj(Cs,Cd), the start

time and end time must be in the same stage using

Equation (8):

,

1

,

1

,

1

(1)

()

1

s

i i NStage

NStage MaxP

s

i i NStage

NStage MaxP

i NStage

NStage MaxP

t z NStage ThrPut

t z NStage ThrPut

z

 (8)

3) Task execution for shared resources.

To model the behaviour of communication edges using

shared memory, Comj(Cs,Cd) be divided into write and

read operators labelled with rectangle Ws and Rd. For a

shared memory, data is pushed to a buffer at the start time

of write operation and popped at the finished time of read

operation. So, the communication time of edge can

calculate with Equation (9).

e s

j jd jsComT t t . (9)

Precedence of write/read operation must be satisfied as

following Equation (10):

(,)

(,)

s s

js j

e s

js js j

e e

jd j

e s

js js j

t t

t t Overh Com n

t t

t t Overh Com n

 (10)

It is difficult deal with the sharing resources

contentions. If multiple task nodes are mapped onto the

same instance of component, they cannot be executed

concurrently. For example, Ci1 and Ci2 are mapped onto the

same instance k of component type Typej. Therefore, the

execution interval of Ci and Cj must not be overlapped with

each other. We can use following Equation (11) define

overlap condition:

1 2 1, 2 2 1 1, 2() () (1) 0e s e s

i i i i i i i it t m t t m (11)

mi1,i2 is an auxiliary binary variable. Processor contention

and on-chip communication network contention are

similar in that contentions occur when two or more

tasks/communication edges are trying to access a single

resource at the same time. But in this paper, if a task

mapped to FPGA component, above execution overlap

constraint can be replaced by Equation (12). Due to the

dynamic reconfigurable ability of FPGA, the only

limitation is the hardware area while multiple tasks parallel

execute on FPGA component. For any task mapped to

FPGA, following constraint must be satisfied:

, , , ,

1j j j

i j k i j k

Type SType k NType

x Area MaxArea

 . (12)

Considering shared memory capacity constraint, there
is different from processors or communication networks
because tasks can use the buffer when it is not full. In

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 500-509 Chen Xiaoming, Liu Yan, Li Renfa

505

another words, the contention of buffer occurs when the
sum of the used units by communications is larger than the
buffer size. In this paper, we use similar model proposed
in [9] to calculate communication edges used buffer size.
So, using above method to calculated the used size of a
buffer at time t labelled as Buf(t).

()Buf t BufMax . (13)

Based above constraints and assumptions, the objective

function is minimizing sin

s

kt .

4 Heuristic algorithm

Considering that ILP belongs to the class of NP-complete
problems, we devise a heuristic algorithm based on list
scheduling, which is one of the most popular scheduling
algorithms [18]. Having defined the problem and model,
we now present the heuristic algorithm for the
communication-aware task pipelined scheduling problem,
an overview of which is presented in Figure 2.

Determine Initial Task
Partition and Allocation

Task Graph and
characteristics

Specification and
Constraints

Pipeline and Schedule
Task Graph

Constraints
Satisfied?

Modify Processor
Allocation

No

Yes

Get Result
End

ITeration
Limitation?

No

Unscheduled
End

Yes

FIGURE 2 Overview of algorithm

Given a task graph specification, power budget and
others constraints, the first step consist of determining the
application nodes allocation strategy. In this paper, in an
attempt to increase total throughput of system, as well as
control power dissipation of whole chip, our algorithm try
to execute task on fastest component firstly. In this
procedure, we determine the number and type of
computing components to be used for each of the task
nodes. And we then schedule and pipeline the task nodes
with a pipe stage and a start time exactly. If it doesn’t find
a valid schedule and pipeline, it will modify initial
allocation strategy and repeat the scheduling and pipeline
step. It is repeated until constraints are satisfied or, in the
worst case, it will reach the repeat times constraint and
quit.

4.1 STEP 1: INITIAL ALLOCATION

Given DAG graph, task execution time and power
consumption on different type processor, determining the
initial partition is a simple work since our algorithm
attempts to execute as many task nodes as possible on
powerful processing components. In another words,
energy consumption is our first metric to generate initial
partition. The estimation of task node power consumption
related data can be obtained using profile tools in advance.
Our algorithm's primary goal is to perform the
communication-aware scheduling and pipelining below
the whole chip power consumption budget and provide as
possible as high throughput. Data structure
Aavailable_proc_list record the usage of current
processors, and data structure Allocation_proc_list save
the allocation result. If the final throughput constraint is
not satisfied, we choose the less power processor
allocation until it is matched in next iteration. The initial
processor set consist of the processors on which all the
nodes have an execution time that is less than the
throughput constraint. Because the number of processing
elements of multiprocessors is typically not large, it is not
important that we pay much attention to obtain an exactly
good initial allocation at first step of proposed algorithm.
The initial processor allocation method is very simple, and
we could use other more accurate technique in future
further research. Step1 is summarized by pseudo code in
Figure 3. In pseudo code final step, communication cost of
two nodes which mapped on the same processor set zero.

1. Obtaining initial allocation

2. For (each task node in DAG)

3. maintain Available_proc_list;

4. Allocation_proc_list← max(Poweri,j,k);

5. update Nodes_exe_table;

6. End For

FIGURE 3 Obtain initial processor allocation

4.2 STEP 2: SCHEDULING

The goal of algorithm is to pipeline and schedule the DAG
graph with the highest throughput while keep the whole
chip power consumption constraint. The execution time
and power dissipation data of all type processors have
known in advance as input of our algorithm. Based on
architecture information, execution time, power
dissipation data and initial processor allocation, our aim is
to determine the schedule and pipeline for the DAG graph
that will satisfy the all constraints. In simpler words, our
algorithm will assign each task node to a pipe stage and to
an exactly starting time within a pipe stage such that
predecessor task nodes of finish their execution either in a
previous stage or in the same stage before the task node
begins its execution.

In our schedule process, the same with ILP model, we
must consider shared resource contention problem. For

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 500-509 Chen Xiaoming, Liu Yan, Li Renfa

506

example, if a task node mapped to a processor, then we
need to insure that the selected processor do not execute
any other task node during the time interval that it is
executing task node.

1. For DAG, compute the longest completion time.

2. Assign node priority.

3. Loop

4. Generate a new ready list.

5. Loop

7. IF (node allocate to FPGA)

11. Set time slot with pipeline stage;

12. IF (no available processor in list)

13. Stop. No feasible schedule.

14. Else

15. Assign processor with node time slot.

16. Update Utili_proc_list;

17. End IF

19. Mark node as scheduled, remove from ready list.

20. Until (ready list is empty)

21. Until (nodes in DAG are scheduled)

10. ELSE

8. Set parallel time slot with pipeline stage;

6. Find processor in Allocation_proc_list;

18. End IF

9. Update Utili_proc_list;

FIGURE 4 Scheduling algorithm

Our algorithm is based the well-known list-scheduling
algorithm [18] shown in Figure 4. Algorithm determine the
longest completion time from all nodes to all output nodes,
assuming that the fastest processor is used to running
nodes. This procedure gives the priority for each node. The
completion time of node is a direct indication of its
criticality. The higher completion time means the higher
priority. If task allocated to FPGA component, we assign
parallel execution time slot for the tasks, in which mothed
the tasks will execute immediately if there are enough
resource. In this paper, we use a utilization lists of
processors data structure Utili_proc_list contain the time
tag presents the processor's status. A list of ready nodes
that predecessors have already been scheduled is
established. As result, we can find the feasible start time of
each node in the ready list. A task node in ready list has
been mapped to processor and obtained starting time, it is
consider scheduled and be removed from ready list. This
step is repeated for every node on the ready list, until the
ready list is empty and nodes in DAG are scheduled. This
procedure is described by pseudo code in Figure 4.

Every node should start executing immediately after all
its predecessors have completed. Proposed algorithm starts
by finding the longest execution time path from each node
until any output task node, assuming execution on the
fastest processor. We choose highest priority task node in
ready list to find the feasible starting time. If there are
multiple choices for candidate, our strategy is selecting the
fastest processor that gives us the earliest completion time
firstly. In this procedure, task nodes are scheduled with
starting time and pipe stage considering processor
utilization and pipe stage constraints. For hardware type

processing component such as FPGA or ASIC, we
calculate the starting time and match area cost constraint
due to assume there are some local scheduler for this
component exploit task parallel.

4.3 STEP3 MODIFYING PROCESSOR ALLOCATION

After scheduling the DAG graph in the previous step, if
there is not a feasible starting time for task node, then
modification of processor’s allocation used to try again.
We use a simple method start with one instance of most
powerful consumption processor, and then we can replace
it with the slower processor in the available library. For
instance, we would favour one faster processor over two
slower processors even if the cost of the two were to be
less than the cost of the one. This is because with every
additional or change processor allocation, the extra
communication delays and interface costs could far
outweigh the saved dollars in choosing the slower
processors. Because the iteration times will set to be a
constants number in practical, so that the time complexity
of the heuristic is determined by the partitioning algorithm
in Step1 and retiming scheduling algorithm in Step2. The
main time cost procedure is sorting algorithm and
proposed PCLS algorithm has the relevant same time
complexity with traditional list scheduling algorithm [18]
with additional communication nodes.

5 Results

This section presents the results of experimentation of
proposed ILP model and heuristic algorithm. First, we
discuss the experimental set-up that includes applications,
target architecture and related scheduling techniques.
Then, we show comparison of our scheduling method with
existing heuristic algorithm to justify that our algorithm is
competitive even global power control scenario.

5.1 EXPERIMENTAL SETUP

We evaluated the performance of proposed techniques by
using two benchmark sets. The first benchmark consisted
of task graph instances derived from practical applications
from multimedia applications MJPEG. The task
parameters (including execution times, communication
delays, and cost) were profiled for a set of 1000 run on a
2.67GHz Intel i5 machine and the Xilinx reconfigurable
platform for software processors and FPGA components
respectively. The base task dependence graph of MJPEG
can be replicated to exploit the pipelined scheduling in this
paper. We generated 3 instances for MJPEG application
for different replications of the base task graph. The
second benchmark was a set of synthetic random task
graph instances generated by [19]. These problems were
designed to be unbiased towards any particular solver
approach and are reportedly harder than other existing
benchmarks for scheduling task dependence graphs.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 500-509 Chen Xiaoming, Liu Yan, Li Renfa

507

TABLE 2 Experimental parameter descriptions

Name Description

M-13 base task graph derived from MJEPG decoding
M-24 replicated of M-13 which has 24 nodes

M-35 replicated of M-13 which has 35 nodes

S-1 52 nodes and edge density is 10
S-2 52 nodes and edge density is 30

S-3 52 nodes and edge density is 50

S-4 52 nodes and edge density is 70
S-5 102 nodes and edge density is 30

S-6 102 nodes and edge density is 50

S-7 102 nodes and edge density is 70
Arch1 simple heterogeneous 2-core architecture

Arch2 simple heterogeneous 4-core architecture

Arch3 heterogeneous 4-core architecture with FPGA

Arch4 heterogeneous 8-core architecture with FPGA

Arch5 heterogeneous 12-core architecture with FPGA

We established a prototype implementation of the ILP
model based on LINGO solver. Proposed heuristic
algorithm designed by C++ and whole experiments were
conducted on an Intel Dual-Core i5 2.67GHz processor
with 4GB RAM running Linux. To evaluate influence of
global power control, we consider basic five architectures

that perform inter-processor communication using shared
memory, three multimedia test benches and seven
synthetic task graph test benches. More details description
and notation in Table 2. In our simulation framework,
different architecture and speed of processors expressed
directly with task execution time and cost.

5.2 RESULTS AND DISCUSS

In this experimental, we compare the statistical average

makespans obtained by ILP model, DLS [20] and

proposed PCLS algorithm which iterative times is set to

50.

Figure 5 shows results of the ILP, DLS and PCLS

methods on the first benchmark with realistic MJPEG task

graph running on different architectures, Arch1, Arch2 and

Arch3. We use approximate rate to report the average

percentage approximation of ILP, DLS and PCLS results

from the optimal solution by makespan metric.

(a) Arch1 architecture (b) Arch2 architecture (c) Arch3 architecture

FIGURE 5 Average percentage difference of algorithm

(a) Arch3 architecture (b) Arch4 architecture (c) Arch5 architecture

FIGURE 6 Average performance of different power budget

We observe that proposed ILP model can get the optimal

result using LINGO solver tools on problem instances with
about 35 tasks. In our real experiment, LINGO tools
cannot find any feasible solution when problem instance
more than 40 in desktop computer. This trend seems to be
invariant of the application task graph structure or the
number of processors. For realistic application, heuristic
algorithm can handle bigger problem. Figure 5(a) reports
the results of the three scheduling approaches for
multimedia applications on 2 to 4 cores multiprocessor
architecture. ILP method can find optimal result.
According the increment of task’s node, DLS and PCLS
can obtain approximate result compare with ILP optimal
one. When target architecture is Arch1, there is only 2

cores can execute task. PCLS find out optimal result in M-
13 and M-24 bench compare with DLS. When target
change to 4 cores architecture Arch2 and Arch3,
performance of PLCS can obtain more accurate scheduling
result compare with DLS. Especially in Arch3
architecture, PLCS express more attractively performance
because our algorithm exploits heterogeneity of Arch3.

As mentioned earlier we did not apply our ILP based
technique to the synthetic task graphs due to large
designing times. Figure 6 shows results of the proposed
PCLS algorithms on the second benchmark with randomly
generated task graphs consider global power constraint.
The synthetic benchmark is classified by the number of
tasks and edge density described in Table 2. The optimal

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 500-509 Chen Xiaoming, Liu Yan, Li Renfa

508

solutions for these benches were known a priori [19], so
we can calculate the average approximate rate to evaluate
performance of proposed algorithms. Obviously, the
constraint optimization result from ILP model pale in
comparison to the PCLS results in many task applications.

In our experiments, the PCLS solution was usually
within 85-97% of the optimal on realistic task graphs and
problem instances with over 100 tasks. As shown in
Figure 6(a), PCLS can obtain about 70% optimal
performance based on 70% power budget environment due
to the resources limitation of 4-core architecture. For
heavier tasks node application, Figure 6 (b) and Figure 6(c)
can provide only 12% performance degradation under
70% power budgets based on Arch4 and Arch5.

6 Conclusion

In this paper, we addressed the problem of power
constraint communication aware scheduling based on
reconfigurable multiprocessor architecture. We presented
an ILP formulation that integrated pipelining scheduling
and accurate communication model to maximize the whole
performance of the application under global power
consumption control of chip-level. We presented several
formulas that can be used to calculate communication cost
and power consumption in our ILP model. Although the

ILP method can obtain optimal solutions, its solution time
grows exponentially with the number of inputs. Therefore,
we also proposed heuristic algorithm based on list
scheduling to solve bigger problem in a shorter time.

We performed extensive experimentation with
multimedia application MJPEG, as well as large synthetic
task graphs. Existing technique such as DLS algorithm
was used to compare with proposed PCLS algorithm on
several input sets and different architecture, especially
heterogeneous architecture with FPGA component. The
integration of pipelining and communication aware
heuristic algorithm PCLS can obtain relevant better
performance under chip wide global power consumption
control in comparison to traditional method. For
heterogeneous architecture including FPGA component,
PCLS algorithm can exploit parallelism of FPGA
resources to obtain best trade-off between result quality
and solution generation time with given power budget.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (Grant No. 61300037), Hunan
Provincial Natural Science Foundation of China (Grant No.
12JJ4057) and the Fundamental Research Funds for the
Central Universities.

References

[1] Ma K, Li X, Chen M, Wang X 2011 Scalable power control for

many-core architectures running multi-threaded applications Proc.
Int. Symposium on Computer Architecture USA San Jose 449-60

[2] Srinivasan K, Chatha K S 2007 Integer linear programming and
heuristic techniques for system-level low power scheduling on
multiprocessor architectures under throughput constraints.
Integration, the VLSI Journal 40(3) 326-54

[3] Chatha Karam S, Vemuri R 2002 Hardware-software partitioning
and pipelined scheduling of transformative applications IEEE Trans
Very Large Scale Integration Systems 10(3)193-208

[4] Chen Y-Y, Hsin-Chu, Hsu Y-C, King C-T 1994 MULTIPAR:
behavioral partition for synthesizing multiprocessor architectures
IEEE Trans. Very Large Scale Integration Systems 2(1) 21-32

[5] Topcuoglu H, Hariri S, Wu M-y 2002 Performance-Effective and
Low-Complexity Task Scheduling for Heterogeneous Computing
IEEE Trans Parallel and Distributed Systems 13(3) 260-74

[6] Cescirio W 2002 Component-based design approach for multicore
SoCs Proc. Int’l Design Automation Conference New Orleans USA
789-94

[7] Ye T-Y, Wolf W 1995 Communication synthesis for distributed
embedded systems Proc. Int’l Conference on Computer-Aided
Design San Jose USA 288-94

[8] Kuang S-R, Chen C-Y, Liao R-Z 2005 Partitioning and Pipelined
Scheduling of Embedded System Using Integer Linear Programming
Proc. Int’l Conference on Parallel and Distributed Systems Fukuoka
Japan 37-41

[9] Cho Y 2007 Scheduling with accurate communication delay model
and scheduler implementation for multiprocessor system-on-chip
Design Automation for Embedded Systems 11(2) 167-91

[10] Isci C, Buyuktosunoglu A, Cher C-Y, Bose P, Martonosi M 2006 An
Analysis of Efficient Multi-Core Global Power Management
Policies: Maximizing Performance for a Given Power Budget Proc.
Int. Symposium on Microarchitecture Orlando USA 347-58

[11] Teodorescu R, Torrellas J 2008 Variation-Aware Application
Scheduling and Power Management for chip multiprocessors Proc.
Int. Symposium on Computer Architecture Beijing China 363-74

[12] Winter J, Albonesi D, Shoemaker C 2010 Scalable thread scheduling
and global power management for heterogeneous many-core
architectures Proc. Int’l Conference on Parallel Architectures and
Compilation Techniques Vienna Austria 29-40

[13] Liu G, Park J, Marculescu D 2013 Dynamic thread mapping for high-
performance, power-efficient heterogeneous many-core systems
Proc. Int. Conference on Computer Design Asheville USA 54-61

[14] Gupta V, Brett P, Koufaty D, Reddy D 2012 The forgotten’uncore’:
On the energy-efficiency of heterogeneous cores Proc. USENIX
Annual Technical Conference Boston USA 1-6

[15] Petrica P, Izraelevitz A, Albonesi D, Shoemaker C 2013 Flicker: A
Dynamically Adaptive Architecture for Power Limited Multicore
Systems Proc Int Symposium on Computer Architecture Tel-Aviv
Israel 13-23

[16] Craeynest K V, Jaleel A, Eeckhout L, Narvaez P, Emer J 2012
Scheduling heterogeneous multi-cores through performance impact
Estimate on (PIE) Proc. Int’l Symposium on Computer Architecture
Portland USA 213-24

[17] Lee J, et al 2013 Mapping and Scheduling of Tasks and
Communications on Many-Core SoC Under Local Memory
Constraint IEEE Trans Computer-aided Design of Integrated
Circuits and Systems 32(11) 1748-62

[18] Bakshi S, Gajski D D 1999 Partitioning and Pipelining for
Performance-Constrained Hardware/Software Systems IEEE Trans
Very Large Scale Integration Systems 7(4) 419-32

[19] Davidovic T, Crainic T G 2006 Benchmark-problem instances for
static scheduling of task graphs with communication delays on
homogenegous multiprocessor systems Computers and Operations
Research 33(8) 2155-77

[20] Sih G C, Lee E A 1993 A Compile-Time Scheduling Heuristic for
Interconnection-Constrained Heterogeneous Processor Architectures
IEEE Trans Parallel Distributed System 4(2) 175–87

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 500-509 Chen Xiaoming, Liu Yan, Li Renfa

509

Authors

Xiaoming Chen, 16. 11. 1980, China.

University study: PhD Candidate of Hunan University currently.
Research interests: computer architecture, many-core task scheduling and embedded system.

Yan Liu, 18. 12. 1979, China.

Current position: assistant professor of Hunan University, China.
University study: PhD degree in computer science and technology from Hunan University, China in 2010.
Research interests: computer architecture, embedded system and reconfigurable computing.

Renfa Li, 12. 4. 1956, China.

Current position: professor at Hunan University, China.
University study: PhD degree from Huazhong University of Science and Techonology, China in 2003.
Research interests: computer architecture.

